iFluor 647琥珀酰亚胺酯 货号1031-AAT Bioquest荧光染料

上海金畔生物科技有限公司代理AAT Bioquest荧光染料全线产品,欢迎访问AAT Bioquest荧光染料官网了解更多信息。

iFluor 647琥珀酰亚胺酯

iFluor 647琥珀酰亚胺酯

iFluor 647琥珀酰亚胺酯    货号1031 货号 1031 存储条件 在零下15度以下保存, 避免光照
规格 1 mg 价格 2604
Ex (nm) 656 Em (nm) 670
分子量 1274.66 溶剂 DMSO
产品详细介绍

简要概述

iFluor 647琥珀酰亚胺酯是iFluor系列荧光标记染料之一,可以覆盖整个可见光谱。所有iFluor 染料都具有优异的水溶性,它们的亲水性使有机溶剂的使用极小化。与常规的染料(如FITC,TRITC,Texas Red ,Cy3 ,Cy5和Cy7)相比,iFluor 染料具有更好的标记性能。一些iFluor 染料在某些抗体上明显优于Alexa Fluor 标记染料。它们是用于标记蛋白质和核酸的极便宜的荧光染料(替代Alexa Fluor 染料)。每种iFluor染料的开发都与特定的Alexa Fluor 或其他标记染料(如DyLight 染料)的光谱特性相匹配。

琥珀酰亚胺基(NHS)酯被证明是用于胺修饰的极佳试剂,因为形成的酰胺键基本上与天然肽键相同并且稳定。这些试剂通常是稳定的并且与脂族胺显示出良好的反应性和选择性。当琥珀酰亚胺酯化合物用于缀合反应时,需要考虑的因素很少:1.溶剂:在大多数情况下,活性染料应溶于无水二甲基甲酰胺(DMF)或二甲基亚砜(DMSO)中。 2.反应pH:胺与琥珀酰亚胺酯的标记反应强烈依赖于pH。胺反应性试剂与非质子化脂族胺基团反应,包括蛋白质的末端胺和赖氨酸的β-氨基。因此,胺酰化反应通常在pH 7.5以上进行。通过琥珀酰亚胺酯进行的蛋白质修饰通常可以在pH 8.5-9.5下进行。 3.反应缓冲液:使用胺反应试剂时,必须避免使用含有游离胺(如Tris和甘氨酸)和硫醇化合物的缓冲液。广泛用于蛋白质沉淀的铵盐(例如硫酸铵和乙酸铵)也必须在进行染料缀合之前除去(例如通过透析)。 4.反应温度:大多数缀合在室温下进行。特定标记反应可能需要升高或降低的温度。iFluor系列染料是AF系列染料的完美替代品。

点击查看光谱

点击查看实验方案

iFluor 647琥珀酰亚胺酯    货号1031

  • AAT Bioquest iFluor 染料干货锦集 你想了解的都在这里
  • 锦囊:iFluor 系列染料大集合

产品说明书

染色样本分析

操作步骤

 

1.准备蛋白质储备溶液(溶液A):

将100μL反应缓冲液(如1 M碳酸钠溶液或1 M磷酸盐缓冲液,pH~9.0)与900μL目标蛋白溶液(如抗体,蛋白质浓度> 2 mg / ml,如果可能)混合至100μL,再加入1 mL蛋白质标记原液。

注1:蛋白质溶液(溶液A)的pH值应为8.5±0.5。如果蛋白质溶液的pH低于8.0,则使用1M碳酸氢钠溶液或1M pH 9.0磷酸盐缓冲液将pH调节至8.0-9.0的范围。

注2:蛋白质应溶解于pH7.2-7.4的1X磷酸盐缓冲盐水(PBS)中。如果蛋白质溶解在Tris或甘氨酸缓冲液中,则必须用pH7.2-7.4的1X PBS透析,以除去广泛用于蛋白质沉淀的游离胺或铵盐(例如硫酸铵和乙酸铵)。

注3:不纯的抗体、稳定的牛血清蛋白(BSA)抗体或明胶不会被很好的标记。叠氮化钠或硫柳汞的存在也可能干扰缀合反应。可以通过透析或旋转柱除去叠氮化钠或硫柳汞,以获得极佳标记结果。

注4:如果蛋白质浓度低于2 mg / mL,则结合效率会显着降低。为获得极佳标记效率,建议最终蛋白质浓度范围为2-10 mg / mL。

 

2.准备染料储备溶液(溶液B):

将无水DMSO加入到iFluor 染料SE小瓶中以制备10-20mM储备溶液。 通过移液或涡旋混合均匀。

注意:在开始缀合前准备染料储备溶液(溶液B),及时使用。 染料储备溶液的长期储存可降低染料活性。 溶液B可在冰箱中保存两周,避光保存。 避免冻融循环。

 

3.确定最佳染料/蛋白质比例(可选):

注意:每种蛋白质都需要不同的染料/蛋白质比例,这也取决于染料的性质。蛋白质的过度标记可能影响其结合亲和力,而低染料/蛋白质比率的蛋白质缀合物会降低灵敏度。我们建议您通过使用连续不同量的标记染料溶液重复步骤4和5来实验确定最佳染料/蛋白质比率。通常,对于大多数染料 – 蛋白质缀合物,推荐使用4-6种染料/蛋白质。

3.1使用10:1摩尔比的溶液B(染料)/溶液A(蛋白质)作为起始点:将5μl染料储备溶液(溶液B,假设染料储备溶液为10 mM)加入到样品瓶中。蛋白质溶液(95μl溶液A)有效摇动。假设蛋白质浓度为10mg / mL并且蛋白质的分子量为~200KD,蛋白质的浓度为~0.05mM。

注意:蛋白质溶液中DMSO的浓度应<10%。

3.2运行缀合反应(参见下面的步骤4)。

3.3重复#3.2,溶液B /溶液A的摩尔比为5:1;分别为15:1和20:1。

3.4使用预制的旋转柱纯化所需的缀合物。

3.5计算上述4种结合物的染料/蛋白质比(DOS)。

3.6检测上述4种结合物,确定最佳的染料/蛋白质比例,以扩大标记反应。

 

4.运行结合反应:

4.1有效加入适量的染料储备溶液(溶液B)到蛋白质溶液(溶液A)的小瓶中晃动。

注意:溶液B /溶液的最佳摩尔比由步骤3.6确定。如果跳过步骤3,我们建议使用10:1溶液B(染料)/溶液A(蛋白质)的摩尔比。

4.2继续在室温下旋转或摇动反应混合物30-60分钟。

 

5.纯化缀合物

以下方案是使用Sephadex G-25柱纯化染料 – 蛋白质缀合物的实例。

5.1按照制造说明准备Sephadex G-25色谱柱。

5.2将反应混合物(直接从步骤4)加载到Sephadex G-25柱的顶部。

5.3样品在顶部树脂表面下方运行时立即加入PBS(pH 7.2-7.4)。

5.4向所需样品中加入更多PBS(pH 7.2-7.4)以完成色谱柱纯化。

注1:立即使用时,染料 – 蛋白质偶联物需要用染色缓冲液稀释,并等分多次使用。

注2:对于长期储存,染料 – 蛋白质缀合物溶液需要浓缩或冷冻干燥。

 

图示

iFluor 647琥珀酰亚胺酯    货号1031

图1. HeLa细胞先用小鼠抗微管蛋白染色,再用iFluor 647山羊抗小鼠IgG(H + L)(红色)染色; 细胞核用DAPI(蓝色)染色。

iFluor 647琥珀酰亚胺酯    货号1031

图2. HeLa细胞分别与小鼠抗微管蛋白和AAT的iFluor 647山羊抗小鼠IgG偶联物(红色,左)或AlexaFluor®647山羊抗小鼠IgG(红色,右)一起孵育。 细胞核用Hoechst 33342(蓝色,目录号17530)染色。

iFluor 647琥珀酰亚胺酯    货号1031

图3.将HeLa细胞与小鼠抗微管蛋白和生物素山羊抗小鼠IgG一起孵育,然后分别与AAT的iFluor™647-链霉亲和素缀合物(红色,左)或链霉亲和素与AlexaFluor®647(红色,右)缀合。

 

参考文献

Deep Sequencing Analysis of the Eha-Regulated Transcriptome of Edwardsiella tarda Following Acidification
Authors: D Gao, N Liu, Y Li, Y Zhang, G Liu
Journal: Metabolomics (Los Angel) (2017): 2153–0769

Suramin inhibits cullin-RING E3 ubiquitin ligases
Authors: Kenneth Wu, Robert A Chong, Qing Yu, Jin Bai, Donald E Spratt, Kevin Ching, Chan Lee, Haibin Miao, Inger Tappin, Jerard Hurwitz
Journal: Proceedings of the National Academy of Sciences (2016): E2011–E2018

Glycosaminoglycan mimicry by COAM reduces melanoma growth through chemokine induction and function
Authors: Helene Piccard, Nele Berghmans, Eva Korpos, Chris Dillen, Ilse Van Aelst, Sandra Li, Erik Martens, Sandra Liekens, Sam Noppen, Jo Van Damme
Journal: International Journal of Cancer (2012): E425–E436

 

相关产品

产品名称 货号
iFluor 488琥珀酰亚胺酯 Cat#1023
iFluor 594琥珀酰亚胺酯 Cat#1029
iFluor 555琥珀酰亚胺酯 Cat#1028

说明书
iFluor 647琥珀酰亚胺酯.pdf

iFluor 800 马来酰亚胺 货号1378-AAT Bioquest荧光染料

上海金畔生物科技有限公司代理AAT Bioquest荧光染料全线产品,欢迎访问AAT Bioquest荧光染料官网了解更多信息。

iFluor 800 马来酰亚胺

iFluor 800 马来酰亚胺

iFluor 800 马来酰亚胺    货号1378 货号 1378 存储条件 在零下15度以下保存, 避免光照
规格 1 mg 价格 3924
Ex (nm) 801 Em (nm) 820
分子量 1617.68 溶剂 DMSO
产品详细介绍

简要概述

iFluor 800 马来酰亚胺是美国AAT Bioquest生产的荧光染料,iFluor 染料是一系列优秀的荧光标记染料,可以覆盖整个可见光谱。所有iFluor 染料都具有优异的水溶性。它们的亲水性使有机溶剂的使用极小化。iFluor 染料也具有比经典荧光标记染料更好的标记性能,如FITC,TRITC,Texas Red ,Cy3 ,Cy5和Cy7。一些iFluor 染料在某些抗体上明显优于Alexa Fluor 标记染料。它们是用于标记蛋白质和核酸而不包含性能的极便宜的荧光染料(替代Alexa Fluor 染料)。每种iFluor染料的开发都与特定的Alexa Fluor 或其他标记染料(如DyLight 染料)的光谱特性相匹配。

琥珀酰亚胺基(NHS)酯被证明是用于胺修饰的极佳试剂,因为形成的酰胺键基本上与天然肽键相同并且稳定。这些试剂通常是稳定的并且与脂族胺显示出良好的反应性和选择性。当琥珀酰亚胺酯化合物用于缀合反应时,需要考虑的因素很少:1)溶剂:在大多数情况下,活性染料应溶于无水二甲基甲酰胺(DMF)或二甲基亚砜(DMSO)中。 2)反应pH:胺与琥珀酰亚胺酯的标记反应强烈依赖于pH。胺反应性试剂与非质子化脂族胺基团反应,包括蛋白质的末端胺和赖氨酸的β-氨基。因此,胺酰化反应通常在pH 7.5以上进行。通过琥珀酰亚胺酯进行的蛋白质修饰通常可以在pH 8.5-9.5下进行。 3)反应缓冲液:使用胺反应试剂时,必须避免使用含有游离胺(如Tris和甘氨酸)和硫醇化合物的缓冲液。广泛用于蛋白质沉淀的铵盐(例如硫酸铵和乙酸铵)也必须在进行染料缀合之前除去(例如通过透析)。 4)反应温度:大多数缀合在室温下进行。然而,特定标记反应可能需要升高或降低的温度。金畔生物是AAT Bioquest的中国代理商,为您提供最优质的iFluor 800 马来酰亚胺。 

点击查看光谱

点击查看实验方案

  • AAT Bioquest iFluor 染料干货锦集 你想了解的都在这里
  • 锦囊:iFluor 系列染料大集合

产品说明书

染色样本分析

操作步骤

1.准备蛋白质储备溶液(溶液A):

将100μL反应缓冲液(如1 M碳酸钠溶液或1 M磷酸盐缓冲液,pH~9.0)与900μL目标蛋白溶液(如抗体,蛋白质浓度> 2 mg / ml,如果可能)混合至100μL给予1 mL蛋白质标记原液。

注1:蛋白质溶液(溶液A)的pH值应为8.5±0.5。如果蛋白质溶液的pH低于8.0,则使用1M碳酸氢钠溶液或1M pH 9.0磷酸盐缓冲液将pH调节至8.0-9.0的范围。

注2:蛋白质应溶解于pH7.2-7.4的1X磷酸盐缓冲盐水(PBS)中。如果蛋白质溶解在Tris或甘氨酸缓冲液中,则必须用pH7.2-7.4的1X PBS透析,以除去广泛用于蛋白质沉淀的游离胺或铵盐(例如硫酸铵和乙酸铵)。

注3:不纯抗体、牛血清白蛋白(BSA)或明胶稳定的抗体不会被很好地标记。叠氮化钠或硫柳汞的存在也可能干扰缀合反应。可以通过透析或旋转柱除去叠氮化钠或硫柳汞,以获得极佳标记结果。

注4:如果蛋白质浓度低于2 mg / mL,则结合效率会显着降低。为获得极佳标记效率,建议极终蛋白质浓度范围为2-10 mg / mL。

 

2.准备染料储备溶液(溶液B):

将无水DMSO加入到iFluor 染料SE小瓶中以制备10-20mM储备溶液。 通过移液或涡旋混合均匀。

注意:在开始缀合前准备染料储备溶液(溶液B)。 及时使用。 染料储备溶液的长期储存可降低染料活性。 溶液B可在冰箱中保存两周,避光保存。 避免冻融循环。

 

3.确定极佳染料/蛋白质比例(可选):

注意:每种蛋白质都需要不同的染料/蛋白质比例,这也取决于染料的性质。蛋白质的过度标记可能不利地影响其结合亲和力,而低染料/蛋白质比率的蛋白质缀合物会降低灵敏度。我们建议您通过使用连续不同量的标记染料溶液重复步骤4和5来实验确定极佳染料/蛋白质比率。通常,对于大多数染料 – 蛋白质缀合物,推荐使用4-6种染料/蛋白质。

3.1使用10:1摩尔比的溶液B(染料)/溶液A(蛋白质)作为起始点:将5μl染料储备溶液(溶液B,假设染料储备溶液为10 mM)加入到样品瓶中。蛋白质溶液(95μl溶液A)有效摇动。假设蛋白质浓度为10mg / mL并且蛋白质的分子量为~200KD,蛋白质的浓度为~0.05mM。

注意:蛋白质溶液中DMSO的浓度应<10%。

3.2运行缀合反应(参见下面的步骤4)。

3.3重复#3.2,溶液B /溶液A的摩尔比为5:1;分别为15:1和20:1。

3.4使用预制的旋转柱纯化所需的缀合物。

3.5计算上述4种结合物的染料/蛋白质比(DOS)(见说明书)。

3.6运行上述4种结合物的功能测试,确定极佳的染料/蛋白质比例,以扩大标记反应。

 

4.运行结合反应:

4.1有效加入适量的染料储备溶液(溶液B)到蛋白质溶液(溶液A)的小瓶中晃动。

注意:溶液B /溶液的极佳摩尔比由步骤3.6确定。如果跳过步骤3,我们建议使用10:1溶液B(染料)/溶液A(蛋白质)的摩尔比。

4.2继续在室温下旋转或摇动反应混合物30-60分钟。

 

5.纯化缀合物

以下方案是使用Sephadex G-25柱纯化染料 – 蛋白质缀合物的实例。

5.1按照制造说明准备Sephadex G-25色谱柱。

5.2将反应混合物(直接从步骤4)加载到Sephadex G-25柱的顶部。

5.3样品在顶部树脂表面下方运行时立即加入PBS(pH 7.2-7.4)。

5.4向所需样品中加入更多PBS(pH 7.2-7.4)以完成色谱柱纯化。 合并含有所需染料 – 蛋白质缀合物的级分。

注1:立即使用时,染料 – 蛋白质偶联物需要用染色缓冲液稀释,并等分多次使用。

注2:对于长期储存,染料 – 蛋白质缀合物溶液需要浓缩或冷冻干燥

 

参考文献

Nanovesicle delivery to the liver via retinol binding protein and platelet-derived growth factor receptors: how targeting ligands affect biodistribution
Authors: Ching-Yun Hsu, Chun-Han Chen, Ibrahim A Aljuffali, You-Shan Dai, Jia-You Fang
Journal: Nanomedicine (2017)

 

相关产品

产品名称 货号
iFluor 800 琥珀酰亚胺酯 Cat#1379
iFluor 800 酸 Cat#1375

说明书
iFluor 800 马来酰亚胺.pdf

DNP Styramide * DNP酪胺的优异替代品* 货号45310-AAT Bioquest荧光染料

上海金畔生物科技有限公司代理AAT Bioquest荧光染料全线产品,欢迎访问AAT Bioquest荧光染料官网了解更多信息。

DNP Styramide * DNP酪胺的优异替代品*

DNP Styramide * DNP酪胺的优异替代品*

DNP Styramide * DNP酪胺的优异替代品*    货号45310 货号 45310 存储条件 在零下15度以下保存, 避免光照
规格 100 Slides 价格 5244
Ex (nm) Em (nm)
分子量 575.62 溶剂 DMSO
产品详细介绍

简要概述

Power Styramide 信号放大(PSA)系统是可以检测细胞和组织中极低丰度靶标最灵敏的方法之一,其荧光信号强度比广泛使用的tyramide(TSA)试剂高10-50倍。当与iFluor 染料结合使用时,iFluor 染料标记的Styramide 缀合物可以产生比标准ICC 更高精度和灵敏度(超过100倍)的荧光信号。PSA利用辣根过氧化物酶(HRP)来催化活性原位共价沉积荧光团,PSA自由基的反应性比酪酰胺自由基高得多,这使PSA系统比传统的TSA试剂更快,更耐用,更灵敏。与酪酰胺试剂相比,Styramide 缀合物具有更高效率标记靶标的能力,因此产生更高的荧光信号。与标准直接偶联法或酪酰胺扩增相比、与相同水平的敏感性相比,Styramide 偶联物还可以明显减少一级抗体的消耗。DNP Styramide是DNP酪胺的优良替代品,DNP酪胺广泛用于众所周知的酪胺信号放大(TSA)。金畔生物是AAT Bioquest的中国代理商,为您提供最优质的DNP Styramide。

产品说明书

样品实验方案

简要概述

  1. 修复/透化细胞或组织
  2. 在封闭缓冲液中添加一抗
  3. 加入结合HRP的二抗
  4. 准备Styramide工作溶液,并在室温下添加到细胞或组织中(5-10分钟)

 

溶液配制

储备溶液配制

1.Styramide 储备溶液(100X):将100 µL DMSO加入iFluor 染料标记的含有Styramide 缀合物的小瓶中,制成100X Styramide 储备溶液。注意:一次性使用等分试样,并将未使用的100X储备溶液在2-8 的冰箱避光保存,并避免重复冻融循环。

2.H2O2储备溶液:将90 µL的ddH2O加入10 µL 3%过氧化氢中(未提供)。注意:在使用当天准备新鲜的100X H2O2溶液,做到现用现配。

 

工作溶液配制

1.Styramide 工作溶液(1X):每1 mL反应缓冲液需要10 µL Styramide 储备溶液和10 µL H2O2储备溶液。注意:盖玻片或96孔板中每孔所需100 µL Styramide 工作溶液,(提供的Styramide 足以进行100次测试。)注意:必须在制备后2小时内使用Styramide 工作溶液,并避免直接暴露在光线下。

2.二级抗体-HRP工作溶液:根据所使用的二抗说明书中的建议配制适当浓度的二级抗体-HRP工作溶液。

3.抗DNP抗体工作溶液:根据所使用的产品的说明书建议调配适当浓度的抗DNP抗体缀合物工作液。

 

实验步骤

(该步骤适用于细胞或组织染色)

细胞固定和透化

1.在室温下用3.7%甲醛或低聚甲醛的PBS固定细胞或组织20分钟。

2.用PBS冲洗细胞或组织两次。

3.在室温下用0.1%Triton X-100溶液透化细胞1-5分钟。

4.用PBS冲洗细胞或组织两次。

 

组织固定,脱石蜡和补液

(根据标准IHC方案对组织进行脱蜡和脱水处理。根据实验方案使用特定溶液进行抗原修复。)

 

过氧化物酶标记

1.可选:通过在过氧化物酶淬灭溶液(例如3%过氧化氢)中孵育细胞或组织样品10分钟来淬灭内源性过氧化物酶活性,然后在室温下用PBS冲洗两次。

2.可选:如果使用结合HRP的链霉亲和素,建议通过生物素封闭缓冲液封闭内源性生物素。

3.在4°C下用封闭溶液(例如含1%BSA的PBS)封闭30分钟。

4.除去封闭溶液,并添加稀释好的一抗,在室温下放置60分钟或在4°C下放置过夜。

5.用PBS洗涤3次,每次5分钟。

6.将100 µL二级抗体-HRP工作溶液添加到每个样品中,并在室温下孵育60分钟。注意:孵育时间和浓度可以根据信号强度而变化。

7.用PBS洗涤3次,每次5分钟。

 

Styramide标记

1.向每个样品中添加100 µL Styramide 工作溶液,并在室温下孵育5-10分钟。 注意:如果您观察到非特异性信号,则可以缩短Styramide的孵育时间。您应该在不同的孵育时间点使用阳性和阴性对照确定样品的最佳孵育时间,或者您可以在工作溶液中使用较低浓度的Styramide。

2.用PBS冲洗3次。

 

DNP标记

1.将100 µL二级抗DNP抗体缀合物工作溶液添加到每个样品,并在室温下孵育60分钟。

2.用PBS冲洗3次。

 

复染和荧光成像

1.根据需要对细胞或组织样本进行复染。AAT提供了一系列核复染色试剂,如表1所示。请按照试剂附带的说明进行操作。

2.加上盖玻片。

3.使用适当的滤波器观察Styramide的荧光信号。

表1.建议用于核复染色的产品。 

货号 产品名称 Ex/Em(nm)
17548 核蓝 DCS1 350/461
17550 核绿 DCS1 503/526
17551 核橙 DCS1 528/576
17552 核红 DCS1 642/660

 

图示

 

DNP Styramide * DNP酪胺的优异替代品*    货号45310

图1.Power Styramide 信号放大(PSA)系统是可以检测细胞和组织中极低丰度的靶标最灵敏的方法之一,其荧光信号强度比广泛使用的tyramide(TSA)试剂高10-50倍。与iFluor染料结合使用后具有更高荧光强度、更高的光稳定性和增强的水溶性,iFluor染料标记的Styramide缀合物可以产生比标准ICC /明显更高的精度和灵敏度(超过100倍)的荧光信号。PSA利用辣根过氧化物酶(HRP)的催化活性原位共价沉积荧光团。PSA自由基的反应性比酪酰胺自由基高得多,这使PSA系统比传统的TSA试剂更快,更耐用,更灵敏。

DNP Styramide * DNP酪胺的优异替代品*    货号45310

图2.用兔抗Tubulin一抗标记的HeLa细胞的荧光图像。然后将细胞分别用HRP标记的山羊抗兔IgG二抗和iFluor Styramide(左)或AlexaFluor 350酪酰胺(中和右)染色。使用DAPI滤光片组拍摄荧光图像,并相应地标记曝光时间。在相同的曝光时间(25毫秒)下,iFluor 350 Styramide 显示出比AlexaFluor 350酪酰胺明显更高的荧光强度。AlexaFluor 350酪酰胺需要更长的曝光时间(125毫秒)才能使染色可视化。

 

说明书
DNP Styramide * DNP酪胺的优异替代品*.pdf

iFluor 440琥珀酰亚胺酯 货号71041-AAT Bioquest荧光染料

上海金畔生物科技有限公司代理AAT Bioquest荧光染料全线产品,欢迎访问AAT Bioquest荧光染料官网了解更多信息。

iFluor 440琥珀酰亚胺酯

iFluor 440琥珀酰亚胺酯

货号 71041 存储条件 在零下15度以下保存, 避免光照
规格 100 ug 价格 960
Ex (nm) 434 Em (nm) 480
分子量 692.83 溶剂 DMSO
产品详细介绍

简要概述

iFluor 440琥珀酰亚胺酯是iFluor系列荧光标记染料之一,可以覆盖整个可见光谱。所有iFluor 染料都具有优异的水溶性,它们的亲水性使有机溶剂的使用极小化。与常规的染料(如FITC,TRITC,Texas Red ,Cy3 ,Cy5和Cy7)相比,iFluor 染料具有更好的标记性能。一些iFluor 染料在某些抗体上明显优于Alexa Fluor 标记染料。它们是用于标记蛋白质和核酸的极便宜的荧光染料(替代Alexa Fluor 染料)。每种iFluor染料的开发都与特定的Alexa Fluor 或其他标记染料(如DyLight 染料)的光谱特性相匹配。

琥珀酰亚胺基(NHS)酯被证明是用于胺修饰的极佳试剂,因为形成的酰胺键基本上与天然肽键相同并且稳定。这些试剂通常是稳定的并且与脂族胺显示出良好的反应性和选择性。当琥珀酰亚胺酯化合物用于缀合反应时,需要考虑的因素很少:1.溶剂:在大多数情况下,活性染料应溶于无水二甲基甲酰胺(DMF)或二甲基亚砜(DMSO)中。 2.反应pH:胺与琥珀酰亚胺酯的标记反应强烈依赖于pH。胺反应性试剂与非质子化脂族胺基团反应,包括蛋白质的末端胺和赖氨酸的β-氨基。因此,胺酰反应通常在pH 7.5以上进行。被琥珀酰亚胺酯修饰的蛋白质是具有代表性的,通常在pH 8.5-9.5下合成。 3.反应缓冲液:使用胺反应试剂时,必须避免使用含有游离胺(如Tris和甘氨酸)和硫醇化合物的缓冲液。广泛用于蛋白质沉淀的铵盐(例如硫酸铵和乙酸铵)也必须在进行染料缀合之前除去(例如通过透析)。 4.反应温度:大多数缀合在室温下进行。特定标记反应可能需要升高或降低的温度。iFluor系列染料是AF系列染料的完美替代品。

iFluor 440琥珀酰亚胺酯   货号71041

点击查看光谱

点击查看实验方案

  • AAT Bioquest iFluor 染料干货锦集 你想了解的都在这里
  • 锦囊:iFluor 系列染料大集合
  • 使用iFluor 琥珀酰亚胺酯染料标记蛋白质

产品说明书

染色样本分析

操作步骤

1.准备蛋白质储备溶液(溶液A):

将100μL反应缓冲液(如1 M碳酸钠溶液或1 M磷酸盐缓冲液,pH~9.0)与900μL目标蛋白溶液(如抗体,蛋白质浓度> 2 mg / ml,如果可能)混合至100μL,再加入1 mL蛋白质标记原液。

注1:蛋白质溶液(溶液A)的pH值应为8.5±0.5。如果蛋白质溶液的pH低于8.0,则使用1M碳酸氢钠溶液或1M pH 9.0磷酸盐缓冲液将pH调节至8.0-9.0的范围。

注2:蛋白质应溶解于pH7.2-7.4的1X磷酸盐缓冲盐水(PBS)中。如果蛋白质溶解在Tris或甘氨酸缓冲液中,则必须用pH7.2-7.4的1X PBS透析,以除去广泛用于蛋白质沉淀的游离胺或铵盐(例如硫酸铵和乙酸铵)。

注3:不纯的抗体、稳定的牛血清蛋白(BSA)抗体或明胶不会被很好的标记,叠氮化钠或硫柳汞的存在也可能干扰缀合反应。可以通过透析或旋转柱除去叠氮化钠或硫柳汞,以获得极佳标记结果。

注4:如果蛋白质浓度低于2 mg / mL,则结合效率会显着降低。为获得极佳标记效率,建议最终蛋白质浓度范围为2-10 mg / mL。

 

2.准备染料储备溶液(溶液B):

将无水DMSO加入到iFluor 染料SE小瓶中以制备10-20mM储备溶液。 通过移液或涡旋混合均匀。

注意:在开始缀合前准备染料储备溶液(溶液B),及时使用。 染料储备溶液的长期储存可降低染料活性。 溶液B可在冰箱中保存两周,避光保存。 避免冻融循环。

 

3.确定最佳染料/蛋白质比例(可选):

注意:每种蛋白质都需要不同的染料/蛋白质比例,这也取决于染料的性质。蛋白质的过度标记可能影响其结合亲和力,而低染料/蛋白质比率的蛋白质缀合物会降低灵敏度。我们建议您通过使用连续不同量的标记染料溶液重复步骤4和5来实验确定最佳染料/蛋白质比率。通常,对于大多数染料 – 蛋白质缀合物,推荐使用4-6种染料/蛋白质。

3.1使用10:1摩尔比的溶液B(染料)/溶液A(蛋白质)作为起始点:将5μl染料储备溶液(溶液B,假设染料储备溶液为10 mM)加入到样品瓶中。蛋白质溶液(95μl溶液A)有效摇动。假设蛋白质浓度为10mg / mL并且蛋白质的分子量为~200KD,蛋白质的浓度为~0.05mM。

注意:蛋白质溶液中DMSO的浓度应<10%。

3.2运行缀合反应(参见下面的步骤4)。

3.3重复#3.2,溶液B /溶液A的摩尔比为5:1;分别为15:1和20:1。

3.4使用预制的旋转柱纯化所需的缀合物。

3.5计算上述4种结合物的染料/蛋白质比(DOS)。

3.6检测上述4种结合物,确定最佳的染料/蛋白质比例,以扩大标记反应。

 

4.运行结合反应:

4.1有效加入适量的染料储备溶液(溶液B)到蛋白质溶液(溶液A)的小瓶中晃动。

注意:溶液B /溶液的最佳摩尔比由步骤3.6确定。如果跳过步骤3,我们建议使用10:1溶液B(染料)/溶液A(蛋白质)的摩尔比。

4.2继续在室温下旋转或摇动反应混合物30-60分钟。

 

5.纯化缀合物

以下方案是使用Sephadex G-25柱纯化染料 – 蛋白质缀合物的实例。

5.1按照说明书准备Sephadex G-25色谱柱。

5.2将反应混合物(直接从步骤4)加载到Sephadex G-25柱的顶部。

5.3样品在顶部树脂表面下方运行时立即加入PBS(pH 7.2-7.4)。

5.4向所需样品中加入更多PBS(pH 7.2-7.4)以完成色谱柱纯化。

注1:立即使用时,染料 – 蛋白质偶联物需要用染色缓冲液稀释,并等分多次使用。

注2:对于长期储存,染料 – 蛋白质缀合物溶液需要浓缩或冷冻干燥。

 

图示

iFluor 440琥珀酰亚胺酯   货号71041

图1.将HeLa细胞与(Tubulin +)或(Tubulin-)小鼠抗微管蛋白一起孵育,然后与iFluor 488山羊抗小鼠IgG缀合物(绿色,左)和AlexaFluor®488山羊抗小鼠IgG缀合物(绿色)一起孵育,右)。细胞核用Hoechst 33342(蓝色)染色。

iFluor 440琥珀酰亚胺酯   货号71041

图2.人淋巴细胞上AlexaFluor®488和iFluor 488抗人CD4的流式细胞仪分析。在每个测试中,PBMC细胞都用0.5 ug 488抗人CD4和0.5 ug iFluor 488抗人CD4染色。在ACEA流式细胞仪系统上进行流式细胞仪分析。

iFluor 440琥珀酰亚胺酯   货号71041

图3. HeLa细胞先用兔抗微管蛋白染色,再用iFluor 488山羊抗兔IgG(H + L)染色,细胞核用nuclear red DCS1染色。

 

试剂应用文献

RIM and RIM-BP form presynaptic active-zone-like condensates via phase separation

Authors: Wu, Xiandeng and Cai, Qixu and Shen, Zeyu and Chen, Xudong and Zeng, Menglong and Du, Shengwang and Zhang, Mingjie
Journal: 
Molecular cell (2019): 971–984

Basal condensation of Numb and Pon complex via phase transition during Drosophila neuroblast asymmetric division
Authors: Shan, Zelin and Tu, Yuting and Yang, Ying and Liu, Ziheng and Zeng, Menglong and Xu, Huisha and Long, Jiafu and Zhang, Mingjie and Cai, Yu and Wen, Wenyu
Journal: Nature Communications (2018): 737

 

参考文献

Deep Sequencing Analysis of the Eha-Regulated Transcriptome of Edwardsiella tarda Following Acidification
Authors: D Gao, N Liu, Y Li, Y Zhang, G Liu
Journal: Metabolomics (Los Angel) (2017): 2153–0769

Suramin inhibits cullin-RING E3 ubiquitin ligases
Authors: Kenneth Wu, Robert A Chong, Qing Yu, Jin Bai, Donald E Spratt, Kevin Ching, Chan Lee, Haibin Miao, Inger Tappin, Jerard Hurwitz
Journal: Proceedings of the National Academy of Sciences (2016): E2011–E2018

Glycosaminoglycan mimicry by COAM reduces melanoma growth through chemokine induction and function
Authors: Helene Piccard, Nele Berghmans, Eva Korpos, Chris Dillen, Ilse Van Aelst, Sandra Li, Erik Martens, Sandra Liekens, Sam Noppen, Jo Van Damme
Journal: International Journal of Cancer (2012): E425–E436

 

相关产品

产品名称 货号
iFluor 647琥珀酰亚胺酯 Cat#1031
iFluor 594琥珀酰亚胺酯 Cat#1029
iFluor 555琥珀酰亚胺酯 Cat#1028

说明书
iFluor 440琥珀酰亚胺酯.pdf

APC-iFluor 750 串联染料 货号2626-AAT Bioquest荧光染料

上海金畔生物科技有限公司代理AAT Bioquest荧光染料全线产品,欢迎访问AAT Bioquest荧光染料官网了解更多信息。

APC-iFluor 750 串联染料

APC-iFluor 750 串联染料

货号 2626 存储条件 在2-8度冷藏保存, 避免光照
规格 1 mg 价格 2388
Ex (nm) 754 Em (nm) 776
分子量 溶剂 Water
产品详细介绍

简要概述

产品基本信息

货号:2626

产品名称:APC-iFluor 750 串联染料

规格:1mg

储存条件:2-8℃避光防潮

保质期:6个月

 

产品物理化学光谱特性

外观:固体

溶剂:水

 

产品介绍

串联染料是一类独特的荧光分子,由两种不同的共价连接荧光团、供体(例如 PE 或 APC)和发射较长波长的荧光受体(例如 Texas Red、Cy5、Cy7、iFluor 594 或 iFluor 750组成)。APC-iFluor 750 串联染料是常用 APC-Cy7 的绝佳替代品,具有更高的 FRET 效率和信号。其主要吸收峰位于 651 nm,发射峰位于 ~780 nm。 金畔还提供其预活化的 APC-iFluor 750 串联染料,以促进 APC-iFluor 750 串联与抗体和其他蛋白质(如链霉亲和素和其他二级试剂)的串联。我们的预活化 APC-iFluor 750 可随时进行缀合,其产量比传统繁琐的SMCC 的化学方法高得多。此外,我们的预活化 APC-iFluor 750 串联染料通过蛋白质中丰富的氨基与蛋白质缀合,而 SMCC 化学靶向必须通过抗体还原再生的硫醇基团。

 

参考文献

CD4+ T cells and natural killer cells: Biomarkers for hepatic fibrosis in human immunodeficiency virus/hepatitis C virus-coinfected patients.
Authors: Laufer, Natalia and Ojeda, Diego and Polo, María Laura and Martinez, Ana and Pérez, Héctor and Turk, Gabriela and Cahn, Pedro and Zwirner, Norberto Walter and Quarleri, Jorge
Journal: World journal of hepatology (2017): 1073-1080

Quantification of mitochondrial reactive oxygen species in living cells by using multi-laser polychromatic flow cytometry.
Authors: De Biasi, Sara and Gibellini, Lara and Bianchini, Elena and Nasi, Milena and Pinti, Marcello and Salvioli, Stefano and Cossarizza, Andrea
Journal: Cytometry. Part A : the journal of the International Society for Analytical Cytology (2016): 1106-1110

Analysis of Populations of Memory T-Helper Cells Expressing CXCR3 and CCR6 Chemokine Receptors in Peripheral Blood of Patients with Chronic Viral Hepatitis C.
Authors: Elezov, D S and Kudryavtsev, I V and Arsent’ev, N A and Basin, V V and Esaulenko, E V and Semenov, A V and Totolyan, A A
Journal: Bulletin of experimental biology and medicine (2015): 238-42

Presence of CD34(+)CD38(-)CD58(-) leukemia-propagating cells at diagnosis identifies patients at high risk of relapse with Ph chromosome-positive ALL after allo-hematopoietic SCT.
Authors: Kong, Y and Xu, L-P and Liu, Y-R and Qin, Y-Z and Sun, Y-Q and Wang, Y and Jiang, H and Jiang, Q and Chen, H and Chang, Y-J and Huang, X-J
Journal: Bone marrow transplantation (2015): 348-53

A flow cytometric method for the analysis of macrophages in the vascular wall.
Authors: Moore, Jeffrey P and Sakkal, Samy and Bullen, Michelle L and Kemp-Harper, Barbara K and Ricardo, Sharon D and Sobey, Christopher G and Drummond, Grant R
Journal: Journal of immunological methods (2013): 33-43

Combined normal donor and CLL: Single tube ZAP-70 analysis.
Authors: Degheidy, Heba A and Venzon, David J and Farooqui, Mohammed Z H and Abbasi, Fatima and Arthur, Diane C and Wilson, Wyndham H and Wiestner, Adrian and Stetler-Stevenson, M A and Marti, Gerald E
Journal: Cytometry. Part B, Clinical cytometry (2012): 67-77

The role of CD19 and CD27 in the diagnosis of multiple myeloma by flow cytometry: a new statistical model.
Authors: Cannizzo, Elisa and Carulli, Giovanni and Del Vecchio, Luigi and Ottaviano, Virginia and Bellio, Emanuele and Zenari, Ezio and Azzarà, Antonio and Petrini, Mario and Preffer, Frederic
Journal: American journal of clinical pathology (2012): 377-86

Measurement conditions for flow cytometry analyses of cell lines from urological carcinomas.
Authors: Tölle, Angelika and Abdallah, Ziyad and Jung, Klaus and Bäumler, Hans
Journal: Journal of fluorescence (2010): 779-86

An optimized flow cytometry protocol for analysis of angiogenic monocytes and endothelial progenitor cells in peripheral blood.
Authors: Hristov, Mihail and Schmitz, Susanne and Schuhmann, Christoph and Leyendecker, Thorsten and von Hundelshausen, Philipp and Krötz, Florian and Sohn, Hae-Young and Nauwelaers, Frans A and Weber, Christian
Journal: Cytometry. Part A : the journal of the International Society for Analytical Cytology (2009): 848-53

Flow cytometry APC-tandem dyes are degraded through a cell-dependent mechanism.
Authors: Le Roy, Christine and Varin-Blank, Nadine and Ajchenbaum-Cymbalista, Florence and Letestu, Rémi
Journal: Cytometry. Part A : the journal of the International Society for Analytical Cytology (2009): 882-90

说明书
APC-iFluor 750 串联染料.pdf